This task requires automatically finding disease mentions in published clinical cases.
All disease mentions are defined by their corresponding character offsets (start character and end character) in UTF-8 plain text clinical cases.
Publication
Antonio Miranda-Escalada, Luis Gascó, Salvador Lima-López, Eulàlia Farré-Maduell, Darryl Estrada, Anastasios Nentidis, Anastasia Krithara, Georgios Katsimpras, Georgios Paliouras, Martin Krallinger (2022) Overview of DisTEMIST at BioASQ: Automatic detection and normalization of diseases from clinical texts: results, methods, evaluation and multilingual resources. Working Notes of Conference and Labs of the Evaluation (CLEF) Forum. CEUR Workshop Proceedings. http://ceur-ws.org/Vol-3180/paper-11.pdf .
Language
Spanish
NLP topic
Abstract task
Dataset
Year
2022
Publication link
Ranking metric
Macro F1
Task results
System | MacroPrecision | MacroRecall | MacroF1 Sort ascending |
---|---|---|---|
PICUSLab-NER Results | 0.7915 | 0.7629 | 0.7770 |
HPI-DHC-post-process | 0.7434 | 0.7483 | 0.7458 |
HPI-DHC-lr-post-process | 0.7417 | 0.7371 | 0.7394 |
SINAI run2-biomedical_model | 0.7520 | 0.7529 | 0.7387 |
SINAI-run1-clinical_model | 0.7519 | 0.7221 | 0.7367 |
HPI-DHC-postprocess | 0.6207 | 0.5196 | 0.5657 |
Better Innovations Lab & Norwegian Centre for E-health Research-run1-snomed | 0.5478 | 0.4577 | 0.4987 |
Better Innovations Lab & Norwegian Centre for E-health Research-run2-snomed-limited | 0.5497 | 0.4549 | 0.4978 |
HPI-DHC-4-ensemble-reranking | 0.5427 | 0.4513 | 0.4928 |
HPI-DHC-3-ensemble | 0.4678 | 0.3890 | 0.4248 |