SocialDisNER focuses on the recognition of disease mentions in Twitter posts. Tweets originate from the following: patients’ accounts, with firsthand health reports; friends, support network and relatives, who share the difficulties faced by patients; and medical professionals, who disseminate reliable information about diseases. Tweets in this task include information on rheumatic diseases such as lupus erythematosus, highly prevalent diseases such as cancer, diabetes, obesity and mental disorders, fibromyalgia and autism spectrum conditions.
Task results
System | Precision | Recall | F1 Sort ascending | CEM | Accuracy | MacroPrecision | MacroRecall | MacroF1 | RMSE | MicroPrecision | MicroRecall | MicroF1 | MAE | MAP | UAS | LAS | MLAS | BLEX | Pearson correlation | Spearman correlation | MeasureC | BERTScore | EMR | Exact Match | F0.5 | Hierarchical F | ICM | MeasureC | Propensity F | Reliability | Sensitivity | Sentiment Graph F1 | WAC | b2 | erde30 | sent | weighted f1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CASIA | 0.9060 | 0.8760 | 0.8910 | ||||||||||||||||||||||||||||||||||
READ-BioMed | 0.8680 | 0.8750 | 0.8710 | ||||||||||||||||||||||||||||||||||
Clac | 0.8510 | 0.8880 | 0.8690 | ||||||||||||||||||||||||||||||||||
PLN CMM | 0.8820 | 0.8430 | 0.8620 | ||||||||||||||||||||||||||||||||||
NLP-CIC-WFU | 0.8420 | 0.8600 | 0.8510 |