Named entity normalization

Given a list of valid codes that includes all of ESCO and a selection of SNOMED-CT terms, participants were asked to automatically normalize the detected entity mentions to their corresponding concept identifier. 

Publication
Salvador Lima-López, Eulàlia Farré-Maduell, Antonio Miranda-Escalada, Vicent Brivá-Iglesias, Martin Krallinger (2021) NLP applied to occupational health: MEDDOPROF shared task at IberLEF 2021 on automatic recognition, classification and normalization of professions and occupations from medical texts. Procesamiento del Lenguaje Natural, Revista nº 67, septiembre de 2021, pp. 243-256.

Task results

System Precision Recall F1 RMSE Sort ascending
SINAI 0.5930 0.5410 0.5660 0.0000
TALP 0.6750 0.5720 0.6190 0.0000
Fadi 0.6820 0.5410 0.6030 0.0000
Galiza 0.7200 0.4820 0.5770 0.0000
KaushikAcharya 0.7200 0.4670 0.5660 0.0000

If you have published a result better than those on the list, send a message to odesia-comunicacion@lsi.uned.es indicating the result and the DOI of the article, along with a copy of it if it is not published openly.